## A general proof of Bing’s shrinkability criterion

HTML articles powered by AMS MathViewer

- by A. Marin and Y. M. Visetti
- Proc. Amer. Math. Soc.
**53**(1975), 501-507 - DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
- PDF | Request permission

## Abstract:

This paper gives a proof of the general Bing shrinkability criterion, including a proof of the fundamental theorem that a shrinkable compact upper semicontinuous decomposition of a complete metric space is realized by a pseudo-isotopy of the space.## References

- R. H. Bing,
*A homeomorphism between the $3$-sphere and the sum of two solid horned spheres*, Ann. of Math. (2)**56**(1952), 354–362. MR**49549**, DOI 10.2307/1969804 - R. H. Bing,
*A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$*, Ann. of Math. (2)**65**(1957), 484–500. MR**92961**, DOI 10.2307/1970058 - R. H. Bing,
*The cartesian product of a certain non-manifold and a line is $E_{4}$*, Bull. Amer. Math. Soc.**64**(1958), 82–84. MR**97034**, DOI 10.1090/S0002-9904-1958-10160-3 - James Dugundji,
*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606** - Robert D. Edwards and Leslie C. Glaser,
*A method for shrinking decompositions of certain manifolds*, Trans. Amer. Math. Soc.**165**(1972), 45–56. MR**295357**, DOI 10.1090/S0002-9947-1972-0295357-6 - Louis F. McAuley,
*Some upper semi-continuous decompositions of $E^{3}$ into $E^{3}$*, Ann. of Math. (2)**73**(1961), 437–457. MR**126258**, DOI 10.2307/1970312
—, - Kiiti Morita and Sitiro Hanai,
*Closed mappings and metric spaces*, Proc. Japan Acad.**32**(1956), 10–14. MR**87077** - A. H. Stone,
*Metrizability of decomposition spaces*, Proc. Amer. Math. Soc.**7**(1956), 690–700. MR**87078**, DOI 10.1090/S0002-9939-1956-0087078-6 - I. A. Vaiĭnšteĭn,
*On closed mappings of metric spaces*, Doklady Akad. Nauk SSSR (N.S.)**57**(1947), 319–321 (Russian). MR**0022067**

*Upper semicontinuous decompositions of*${E^3}$

*into*${E^3}$

*and generalizations to metric spaces*, Topology of $3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 21-26. MR

**25**#4502.

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**53**(1975), 501-507 - MSC: Primary 54B15; Secondary 57A10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
- MathSciNet review: 0388319